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Abstract Phase space method provides a novel way for deducing qualitative features of
nonlinear differential equations without actually solving them. The method is applied here
for analyzing stability of circular orbits of test particles in various physically interesting en-
vironments. The approach is shown to work in a revealing way in Schwarzschild spacetime.
All relevant conclusions about circular orbits in the Schwarzschild-de Sitter spacetime are
shown to be remarkably encoded in a single parameter. The analysis in the rotating Kerr
black hole readily exposes information as to how stability depends on the ratio of source
rotation to particle angular momentum. As a wider application, it is exemplified how the
analysis reveals useful information when applied to motion in a refractive medium, for in-
stance, that of optical black holes.
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1 Introduction

It is well known that in Einstein’s theory of General Relativity (GR) motion in a gravitational
field is described by a system of dynamical equations. The nonlinear ordinary differential
equation for the path is obtained by eliminating the affine parameter from that system of
equations. An important class of solutions of the path equation is formed by circular trajec-
tories. The issue of their stability is particularly important in confinement problems and/or in
accretion phenomenon in astrophysics. However, conventional analysis of stability of orbits
essentially deals with dynamical equations involving the affine parameter and a potential
function. On the other hand, potential functions may not always be immediately evident, for
instance, in a simulated environment like moving refractive dielectrics whereas path equa-
tions in them could follow directly from Fermat’s principle or Hamilton-Jacobi equation.
Therefore, a natural query is to ask if information about stability of circular orbits can be ob-
tained from the geometrical path equation alone. Our aim here is to rigorously demonstrate
that it is indeed possible via phase space analysis of autonomous systems corresponding to
various physically interesting environments. To our knowledge, such a useful application in
gravitational physics seems yet unavailable in the literature.

For our analysis, we shall not require any other information beyond the path equation.
The conserved angular momentum appearing in it will allow us to connect the phase space
results with actual kinematics. An equilibrium state corresponds to a constant solution of
a differential equation describing a mechanical system and conversely. Constant solution
means that velocity ẋ and acceleration ẍ be simultaneously zero. The concept of stability of
an equilibrium state is borrowed from the familiar example of motion of a pendulum about
the equilibrium point x = 0 and ẋ = 0 where x is angle with the vertical. The motion is
stable because a small displacement from the equilibrium position will lead to only small
oscillations of the bob about that position in a vertical plane. Different closed paths on the
phase space about a stable equilibrium point correspond to real oscillations with different
periods. If the paths around an equilibrium point is such that a small displacement from
the equilibrium state takes the system far away from that point, it is called an unstable
equilibrium point. For instance, the equilibrium point x = π and ẋ = 0 is an unstable saddle
in the pendulum motion. There is no closed path around such equilibrium point although
some paths may pass through it depending on the values of the parameter. Open paths not
passing through an equilibrium point represent whirling motion of the pendulum [1].

In this paper, we shall portray path equations for different solutions of GR as plane
autonomous dynamical systems and study them through phase space and/or Hamiltonian
analysis. Of particular interest is the treatment in cosmological scenario and in the Kerr
metric. As a further example, the method is applied to light propagation in a medium rele-
vant to optical black holes and interesting information obtained.

The article is intended for theoretical physicists in general and practicing relativists in
particular. The contents are organized as follows. In Section 2, we briefly describe the path
equation needed for our purpose. Section 3 treats the path equation as an autonomous sys-
tem without the cosmological constant λ = 0. Section 4 treats the autonomous system as
a Hamiltonian system. Section 5 deals with the case λ �= 0. In Sect. 6, we discuss circular
motion in Kerr spacetime. Section 7 shows an example applying the method to light motion
in a refractive medium relevant to optical black holes. Section 8 summarizes the obtained
results. We take G = c0 = 1, unless specifically restored.
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2 Path Equation

A spherically symmetric static solution of the Einstein field equations for a mass M is given
by the Schwarzschild-de Sitter solution (SdS) in standard coordinates (xα) ≡ (t, r, θ,φ):

dτ 2 = B(r)dt2 − B−1(r)dr2 − r2dθ2 − r2 sin2 θdφ2,

B(r) = 1 − 2M

r
− λr2

3

(1)

where λ > 0 is the cosmological constant. The cosmological constant λ ∼ 10−55 cm−2

> 0 is responsible for dark energy that explains the currently observed accelerated cosmic
expansion [2–4]. The case λ < 0 (anti-de Sitter) is observationally ruled out and we shall
not deal with this case here. The case M �= 0, λ = 0 corresponds to the pure Schwarzschild
solution and rH = 2M is the horizon radius so that the metric is valid for r > rH . When
M = 0, λ �= 0 we have pure de Sitter solution which can be reexpressed in such a manner
that it represents an expanding space devoid of matter.

When M �= 0, λ �= 0, there occur two horizons provided that 0 < λ < λcrit = 1
9M2 .

The black hole horizon appears at rh = 1√
λM2

cos π+ξ

3 and the cosmological horizon at

rc = 1√
λM2

cos π−ξ

3 where ξ = cos−1(
√

3λM2). The spacetime is dynamic for r < rh and
for r > rc . At the critical value λ = λcrit , the two horizons coincide at rph = 3M . The static
radius rst is defined as a hypersurface where the attraction due to M balances the cosmic
repulsion due to λ and is given by [5]

rst =
(

3M

λ

) 1
3

. (2)

All circular orbits are bounded from below by r = rph and from above by the static radius
r = rst .

Following conventional stability analyses of circular orbits involving a potential function
V (r), we obtain the expression

d2V

dr2

∣∣∣∣
r=R

= −
(

2M

R3

)( 4
3λR4 − 5λMR3 + R − 6M

R − 3M

)
. (3)

In the case λ = 0, it follows from (3) that stable circular orbits may exist only at radii
R > 6M . At R = 6M , d2V

dr2 |r=R= 0 which indicates that it is a point of inflection. When

R → +∞ and 3M+, we have d2V

dr2 → 0− and +∞ respectively. The first limit indicates
stability in the asymptotic region while the divergent second limit indicates instability.

Defining u = 1
r
, we have the path equation on the equatorial plane θ = π/2 for a particle

as

ẍ = a + bx + cx2 + dx−3 (4)

where an overdot denotes differentiation with respect to φ and

x = u = 1

r
, (5)

a = M

h2
, (6)
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b = −1, (7)

c = 3M, (8)

d = − λ

3h2
, (9)

h = r2 dφ

dτ
= const. (10)

The quantity h is the conserved angular momentum. Equation (4) with the defined coeffi-
cients is all we need.

We shall study it in the phase plane (x = u,y ≡ du
dφ

) posing it as an autonomous system
as follows

ẋ = y, (11)

ẏ = a + bx + cx2 + dx−3. (12)

Equilibrium points of the system are given by

ẋ = 0, ẏ = 0. (13)

The first equation gives circular orbits r = R = const. and the second equation gives the
angular momentum h along that orbit

h2 = MR(1 − λ
3M

R3)

1 − 3M
R

. (14)

It follows that h2 = 0 at R = rst and h2 = ∞ at R = 3M . Let us now consider the case λ = 0
corresponding to the Schwarzschild spacetime.

3 Case I: λ = 0

The autonomous system

ẋ = y, (15)

ẏ = a + bx + cx2 (16)

gives two equilibrium points (x, y) at

P :
(−b + √

b2 − 4ac

2c
,0

)
; Q:

(−b − √
b2 − 4ac

2c
,0

)
.

In order to have these points located on the real phase plane, we have to assume b2 −4ac ≥ 0
or rephrasing, α2 ≡ 1 − 12M2

h2 ≥ 0. We have introduced the shorthand α for notational conve-
nience. Each choice of α gives a corresponding equilibrium point or a value of the radius r .
Let us first consider the degenerate case α = 0 and study the stability of corresponding
radius.
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Case (a): k2 ≡ b2 − 4ac = 0 ⇒ a = b2

4c
�= 0.

The equilibrium point on the phase plane occurs only at (− b
2c

,0). Eliminating the para-
meter a, the autonomous system (15), (16) can be reduced to the following set of equations

ẋ = y, (17)

ẏ = 1

4c
(b + 2cx)2 . (18)

The differential phase path is given by

dy

dx
= (b + 2cx)2

4cy
(19)

which integrates to

y2 = 1

12c2
(b + 2cx)3 + A (20)

where A is an arbitrary constant of integration.
We see that the parameter b has the effect of only translation in the variable x while c

introduces magnification in both x and y. Thus the GR correction term c can be regarded as
the dominating parameter among a, b and c. By the translation

y ′ = y, (21)

x ′ = x + b

2c
(22)

the autonomous system (15), (16) further reduces to

ẋ ′ = y ′, (23)

ẏ ′ = cx ′2 (24)

which gives a one-parameter family of phase paths

3y ′2 = 2cx ′3 + C (25)

on the phase plane (x ′, y ′) where C is an arbitrary parameter. The phase paths for M = 1 (or
c = 3) and different values of C are given in Fig. 1.

Fig. 1 The origin O is a cusp
(see p. 19, Ref. [1]). Path AO

leads to the origin while OB

leads away from O . These paths
correspond to C = 0. For C �= 0,
the paths CDE never reach O

and the motion is analogous to
the whirling motion of the bob of
a pendulum
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The equilibrium point has now been shifted to the origin (0,0) which gives

x ′ = 0 ⇒ r = 6M ⇒ hu ≡ r
dφ

dτ
= const, (26)

y ′ = 0 ⇒ −h
du

dφ
≡ dr

dτ
= 0. (27)

From the above, we immediately learn the following: The equilibrium point corresponds,
in the physical (r,φ) plane, to a circular orbit of radius 6M with the test particle having a
constant cross radial velocity hu and a zero radial velocity −h du

dφ
. From the overall pattern

of the phase paths given in Fig. 1, we see that a small displacement from the equilibrium
state can take the system on a phase path which leads it far away from the equilibrium state.
The dynamical condition for this to happen is given by

α2 = 0 ⇒ h2 = 12M2. (28)

Although the phase path (25) is independent of a, it applies only to massive test particles
because the value of h2 becomes infinity for light (dτ = 0). In this case, the condition (28)
becomes obviously inapplicable. We shall treat this case separately in Sect. 4.

Let us analyze in a little more detail the paths in different quadrants in Fig. 1. A typical
initial state (x ′

0, y
′
0) on the phase plane is as follows

x ′
0 = x0 + b

2c
= x0 − 1

6M
= δ, (29)

y ′
0± = y0± = ±

√
6x ′3

0 + C

3
= ±

√
6δ3 + C

3
(30)

where C > −6δ3. These equations will allow us to closely examine phase paths in the neigh-
borhood of the equilibrium point. We see from (29) that the GR allowed open interval
x−1

0 = r0 ∈ (2M,+∞) is mapped onto a finite open interval x ′
0 ∈ (− 1

6M
, 1

3M
) around the

equilibrium point (0,0). This interval can be subdivided into two parts for δ or x ′
0.

One part is δ ∈ [0, 1
3M

) corresponding to 6M ≥ r0 > 2M . This interval refers to points
(x ′

0, y
′
0+) on the paths in first quadrant and to points (x ′

0, y
′
0−) on the paths in the fourth

quadrant. To proceed further, let us translate (29), (30) to the physical (r,φ) plane choosing
C = 0:

r0 = 6M

6Mδ + 1
, (31)

du

dφ

∣∣∣∣
0±

= ±
√

2δ3 ⇒ dr

dτ

∣∣∣∣
0±

≡ −h

(
du

dφ

)
0±

= ∓h
√

2δ3. (32)

(Note that the cross radial component of velocity can be expressed as r
dφ

dτ
= hx ′ and the

radial component as dr
dτ

= −hy ′.) We find the following distinct possibilities for paths (25)
passing through the equilibrium point (0,0): (i) As δ increases from 0 to 1

3M
, we see from

(29), (30) that both x ′
0 and y ′

0+ increase from the equilibrium point (0,0) which implies that
the phase point in the first quadrant moves outward (to the right), as represented by OB in
Fig. 1. Correspondingly, from (32), we see that u increases with φ which indicates that the
radius r0 undergoes a decrease in time τ from 6M to 2M (as reflected in dr

dτ
|+= −h

√
2δ3 <
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0). (ii) As δ decreases from 1
3M

to 0, we see that both x ′
0 and y ′

0− decrease to the equilibrium
point (0,0) which implies that the phase point in the fourth quadrant moves inward (to the
left), as represented by AO in Fig. 1. Correspondingly, u decreases with φ and the radius
r0 undergoes an increase in time τ from 2M to 6M (as reflected in dr

dτ
|_= +h

√
2δ3 > 0).

For C �= 0, paths will not pass through (0,0) but parts of CDE lying in the first and fourth
quadrant can be interpreted similarly.

The other part is δ ∈ (− 1
6M

,0], for which ∞ > r0 ≥ 6M . This represents points only on
the second and third quadrant (where x ′

0 = δ < 0). In this case, to avoid imaginary quantity
in (32), we must choose C �= 0, that is, we have to deal with the full set of (29), (30). For
different values of C �= 0 in Fig. 1, we see that the phase paths like CDE are not closed
around the equilibrium point. (These paths are analogous to whirling motion of pendulum.)
It is clear that most of the paths in the interval − 1

6M
≤ x ′

0 < 1
3M

, when slightly displaced
from the equilibrium point (0,0), neither converge to it nor form a center about it. In fact,
the phase paths resemble exactly those around a cusp [1]. This leads us to conclude that the
equilibrium point (0,0) corresponding to radius r = 6M is neither stable or nor unstable
because of the dynamically degenerate condition α = 0. This conclusion will be further
supported in Sect. 4.

Case (b): k2 ≡ b2 − 4ac > 0
There are now two distinct equilibrium points occurring at ( −b+k

2c
,0) and ( −b−k

2c
,0). They

combine into a single representative point ( −b+α
2c

,0) where α = +k or −k. Under the trans-
lation

y ′ = y, (33)

x ′ = x − α − b

2c
(34)

the autonomous system (15), (16) reduces, after a little algebra, to

ẋ ′ = y ′, (35)

ẏ ′ = αx ′ + cx ′2. (36)

The equilibrium points in the new (x ′, y ′) phase plane are P1: (0,0) and Q1: (− α
c
,0). The

linearized system of equations near P1: (0,0) is

ẋ ′ = y ′, (37)

ẏ ′ = αx ′. (38)

Comparing it with the general linear system given by

ẋ ′ = a1x
′ + b1y

′, (39)

ẏ ′ = c1x
′ + d1y

′ (40)

we find

a1 = 0, b1 = 1, c1 = α, d1 = 0,

p = a1 + d1 = 0, q = a1d1 − b1c1 = −α
(41)

so that the discriminant is


 ≡ p2 − 4q = 4α. (42)
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Hence the equilibrium point (0,0) will be a center (stable equilibrium) if α < 0 and a saddle
point (unstable equilibrium) if α > 0. Such an abrupt change in the behavior of the system
occurs through α = 0. Therefore, α = 0 can be called a bifurcation point.

The above conclusions are supported by the phase paths following from (35) and (36),
namely,

y ′2 = αx ′2 + 2c

3
x ′3 + D (43)

where D is an arbitrary constant of integration. In the close vicinity of (0,0) such that x ′ ∼ 0
and x ′3 can be neglected, we get

y ′2 − αx ′2 = D (44)

which represents a family of concentric ellipses for α = −k < 0 (Fig. 2, center, stable) and
a family of hyperbolas with asymptotes y ′ = ±√

αx ′ for α = +k > 0 (Fig. 3, saddle point,
unstable). Note that α ∼ 1, since, for physically realistic particle orbits, M2

h2 � 1. Thus, as
a sample, we have taken α = ±k = ±0.9, and c = 3 (which means we are taking units in
which M = 1) and different values of the parameter D in Figs. 2, 3.

Let us see what conclusions we can draw in the physical (r,φ) plane. The point
(x ′, y ′)≡(0,0) shows that the equilibrium radii r depend on the value of h, and hence of α.

Fig. 2 The origin O is a stable
center. Initial conditions slightly
shifted from the center take the
phase paths on closed elliptic
orbits around O . The
corresponding motion in physical
space is periodic analogous to
small oscillations of the bob
about downward vertical

Fig. 3 The origin O is a saddle
point. Only the paths AO and
BO approach the origin while
OC and OD move away from it.
Other paths do not lead to the
origin. EF , GH represent
whirling motion
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These radii follow from (34)

x ′ = x − α − b

2c
= 0 ⇒ r = 6M

1 + α
. (45)

This means ∞ > r > 6M if −1 < α < 0 and 6M > r > 2M if 0 < α < 2. Thus, from what
we have learnt from (44), we find that circular orbits with r > 6M are stable (α has negative
sign) while those with r < 6M are unstable (α has positive sign). Equation (33) gives

y ′ = y = 0 ⇒ du

dφ
= 0 ⇒ dr

dτ
= −h

du

dφ
= 0 (46)

while r
dφ

dτ
≡ hu > 0. That is, the radius r is independent of time while the cross radial

velocity r
dφ

dτ
is nonzero. These are exactly what are to be expected of circular motions.

The other equilibrium point (x ′, y ′)≡(− α
c
,0) corresponds to

−α

c
= x − α − b

2c
⇒ r = 6M

1 − α
. (47)

In the close vicinity of this equilibrium point, we may define

x ′′ = x ′ + α

c
. (48)

When x ′′ ∼ 0, neglecting x ′′2, we have from (35), (36), the linearized system

ẋ ′′ = y ′′, (49)

ẏ ′′ = −αx ′′. (50)

Arguing in the same manner as with (37) and (38), we see that we have here a reverse
situation, viz., the point Q1: (− α

c
,0) is a saddle for α = −k < 0 and a center for α = +k > 0.

We shall show below that this is indeed the case. For this, we shall investigate stability by
posing the autonomous system as a geometrical Hamiltonian system. The latter technique is
said to be more reliable than the linearization technique [1].

4 Hamiltonian System

Dropping primes in the autonomous system, (35), (36), the Hamiltonian system can be de-
fined as

∂H

∂x
= −Y (x, y) = −(αx + cx2), (51)

∂H

∂y
= X(x,y) = y. (52)

The necessary and sufficient condition for the system (51), (52) to be a Hamiltonian system,
namely, ∂X

∂x
+ ∂Y

∂y
= 0, is fulfilled for all x and y. [Such fulfillment is a special feature of

the GR path (4).] Moreover, dH
dφ

= 0 and therefore H(x,y) = const independent of φ. From
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(51) and (52), we get

H(x,y) = −α

2
x2 − c

3
x3 + u(y), (53)

H(x,y) = 1

2
y2 + v(x) (54)

where u(y) and v(x) are arbitrary functions subject to the consistency of (53) and (54).
These two equations will match only if

u(y) = 1

2
y2 − C, (55)

v(x) = −α

2
x2 − c

3
x3 − E (56)

where E is an arbitrary constant. The Hamiltonian paths are given by

H(x,y) = −α

2
x2 − c

3
x3 + 1

2
y2 − E (57)

where E is a parameter. It follows that

∂2H

∂x2
= −(α + 2cx), (58)

∂2H

∂y2
= 1, (59)

∂2H

∂x∂y
= 0. (60)

As before, the equilibrium points occur when X = 0 and Y = 0 which give the points
P1: (0,0) and Q1: (− α

c
,0). Thus the quantity

q0 ≡ ∂2H

∂x2

∂2H

∂y2
−

(
∂2H

∂x∂y

)2

(61)

has the following values

q0|P1 = −α, (62)

q0|Q1 = α. (63)

When −1 < α < 0, the equilibrium point P1 is a stable center since q0 > 0, but Q1 is an
unstable saddle point. For α > 0, the conclusions are reversed. These confirm the results of
Sect. 3. The value α = 0 is a bifurcation point as it represents a transition of the system from
a stable center to an unstable saddle and conversely.

We shall now see what result do we get applying the present method to light trajectories
for which a = 0. From the original set of (15), (16), we see that they lead to the same
Hamiltonian set of (51), (52) with the difference that α is now to be replaced by b. The
equilibrium points then are P2: (0,0) and Q2: (− b

c
,0). The point P2 implies

x = 0 ⇒ r → ∞ (64)
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and the value of q0 |P2= −b = 1 > 0. This implies that P2 is a center. From this, we learn
that light trajectories (straight lines) in asymptotically flat space (r → ∞) are stable. This is
an expected result. The other equilibrium point Q2 implies

x = −b

c
⇒ r = 3M (65)

at which q0 |Q2= b = −1 < 0 showing that Q2 represents a saddle point. In other words,
light orbit at r = 3M is unstable. This shows that the instability of circular orbits of light
at R = 3M depends only on the sign of b and is independent of the sign of α, unlike in the
case of material orbits.

5 Case II: λ �= 0

We have to consider the full autonomous system (11), (12) and as usual, the equilibrium
points are given by ẋ = 0, ẏ = 0. The latter gives the equation

g(x) ≡ cx5 + bx4 + ax3 + d = 0, x �= 0. (66)

Since x has to be non-negative, we have to look only for positive roots of g(x) = 0. Once
the known signs of coefficients are plugged into g(x) = 0, we may apply Descartes’ rule of
signs to see that g(x) = 0 can have either one or three positive real roots, the rest are either
negative or imaginary. The auxiliary equation g′(x) = dg

dx
= 0 has two zero roots and two

nonzero roots μ1, μ2 given by

μ1 = −2b − √
4b2 − 15ac

5c
, μ2 = −2b + √

4b2 − 15ac

5c
. (67)

The reality of the roots of g′(x) = 0 demands that γ 2 ≡ 4b2 − 15ac ≥ 0. Since b = −1 and
c > 0, we see that μ1 ≤ μ2. Let us denote a representative positive root of g(x) by η �= 0, that
is, g(η) = 0. The representative equilibrium point is then (x, y) = (η,0). Then we employ
the usual operations on (11) and (12), viz., a translation x ′ = x − η, y ′ = y, followed by
linearization in the neighborhood of (x ′, y ′) = (0,0). The final result is

ẋ ′ = y ′, (68)

ẏ ′ =
(

5cη2 + 4bη + 3a

η

)
x ′. (69)

Using (39)–(42), we get

q = −
(

5cη2 + 4bη + 3a

η

)
, p = 0, 
 = 4

(
5cη2 + 4bη + 3a

η

)
. (70)

For a meaningful analysis, we must have q �= 0 which means g′(η) �= 0, that is, η can not be
a repeated root of g(x) = 0. Thus, we find that (x ′, y ′) = (0,0) will be a saddle if q < 0 and

 > 0. This is possible if either η < μ1 or η > μ2. The point (x ′, y ′) = (0,0) will be a center
if q > 0 and 
 < 0 which means μ1 < η < μ2. The linearization scheme is not applicable
for η = 0. The important point to note here is that μ1,μ2 do not depend on the cosmological
constant λ. Thus the constraint γ 2 = 4 − 45M2

h2 ≥ 0 applies to orbits resulting from the effect
of M alone. Orbits close to the static radius are not sensitive to this constraint.
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With the above general picture in mind, let us numerically study the behavior of approx-
imate roots of g(x) = 0 for some choices of h. For a given M the equilibrium points, hence
the radii, vary depending on the values of h, or xeq = xeq(h,λ). Choosing units in which
M = 1, and with the values of coefficients given by c = 3, b = −1, a = h−2, d = − λ

3h2 the
equation g(x) = 0 can be rewritten as

h2(3x5 − x4) + x3 − λ

3
= 0; h �= 0. (71)

We observe the following behavior. When h2 → 0, we get only one very small root that
approximates to the static radius xeq = xst = ( λ

3 )
1
3 ∼ 10−18. Other roots are imaginary. As

we increase h2 up to 45
4 , we see that the picture remains almost the same, that is, we continue

to obtain a single radius of the order of xst . When h2 > 45
4 or γ 2 > 0, we find that there occur

three positive roots, one is of the order of the same static radius, but the other two roots
correspond to orbits in the vicinity of M . These results confirm that the radii of orbits close
to or at the static radius are indeed insensitive to values of γ . Let us consider a specific value
h = 8 (say), then we have the following equilibrium points: P1: (x = xst , y = 0), P2: (x =
0.016, y = 0) and P3: (x = 0.316, y = 0) while μ1 = 0.012, μ2 = 0.254. According to the
general discussion above, we expect that P2 should be a stable center as μ1 < x < μ2 while
P1 and P3 should be unstable saddles.

Let us confirm the results by the method of Hamiltonian system. Following the same
procedure as in Sect. 4, we deduce that

H(x,y) = 1

2
y2 −

(
ax + b

2
x2 + c

3
x3 − d

2
x−2

)
− F (72)

where F is an arbitrary parameter. The expression for q0 is

q0 = −(b + 2cx − 3dx−4) (73)

= 1 − 6x − λ

h2
x−4. (74)

From this, we can conclude the following: At the lower bound, that is, at the local photon
radius xph = 1/3, we find q0 = −1 since h2 = ∞. Therefore this particular orbit is unstable
and the instability is independent of λ. On the other hand, at the static radius, q0 |x=xst > 0,
implying that the photon orbit (again h2 = ∞) is stable at x = xst . The stability of light
orbits at the static hypersurface is similar to that in the asymptotically flat region discussed
in Sect. 4. At x = 1

6 , q0 < 0, hence R = 6 is also an unstable radius. Furthermore, q0|P2 > 0
and q0|P3 < 0 confirming earlier expectations. At the static radius x = xst , we have h2 = 0,
and λx−4

st ∼ 1016 so that q0|P1 = −∞. This shows that circular material orbit at the static
radius (P1) is unstable.

What then is the upper bound Rub for stable circular material orbits? This can be found
by requiring that q0 > 0 or

6x + λ

h2
x−4 < 1. (75)

Putting the expression for h2 from (14), and assuming that Rub � 6, we find that

Rub = 4− 1
3

(
λ

3

)− 1
3

(76)
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which is slightly smaller than rst . The radii at which orbits begin to be stable can be obtained
from q0 = 0 which gives

λ = h2x4(1 − 6x), x �= 0. (77)

The maximum of λ is located at x = 2
15 . Again using the expression for h2 from (14), we

get

λmax = 4

5625
� 0.000711. (78)

For λ ∼ 10−55 cm−2, the maximum Schwarzschild mass is Mmax = ( λmax
λ

)
1
2 ∼ 5.75 ×

1020M�. Stable material circular orbits can exist only at R > 15
2 corresponding to γ > 0.

This is confirmed by the stability at P2 (R � 10) and instability at P3 (R � 3.3). The values
λmax and R = 15

2 correspond to another critical value h2 = 45
4 , as may be obtained from (14).

We have obtained it here from a totally different consideration, namely, of roots of g(x) = 0.
For h2 ≥ 45

4 , there exist local stable equilibrium orbits xeq while no stable local xeq exist for
h2 < 45

4 . We see that the restriction h2 ≥ 45
4 is weaker than the previous h2 ≥ 12 for the case

λ = 0.
It is remarkable that a single parameter q0 completely reproduces all the results obtained

by Stuchlík and Hledík [5], including their numerical value, viz. yc(ms) = λmax
3 = 0.000237.

The phase space method can also be applied in the pure de Sitter space which corresponds
to λ > 0, M = 0. There is now no balance of forces at any radius, hence there is no static
radius. The metric with M = 0 immediately fixes a = c = 0 in g(x) = 0. The equilibrium
points then occur at x4 = − λ

3h2 . This implies that there are no real equilibrium points and
we conclude that circular orbits are not possible in this space.

6 Path Equation in Kerr Spacetime

The phase space method can be profitably utilized in the study of motions in a refractive
medium as well. For instance, Evans and Rosenquist [6] showed that the equation of optics
in a refractive medium of index n(�r) can be effectively rephrased as a Newtonian “ �f = m�a”
form of mechanics. This optical-mechanical analogy led via Fermat’s principle to a path
equation for light in the form

d2�r
dA2

= ��
(

n2

2

)
(79)

where A is a stepping parameter defined in Ref. [6] by dA = n−2dt . Optical analogues of
mechanical quantities are marked by “..”. The equation of motion (79) has been subsequently
extended in Ref. [7] to include also the motion of material particles. Note that the form of
n(�r) can be arbitrarily preassigned depending on the nature of the medium. The relevant
quantities in this formalism are the optical version of mechanical quantities. For instance,
instead of the classical angular momentum h, its optical analogue “h0”, viz., h0 = r2 dφ

dA
is

conserved if n = n(r). A specific form of n = n(r) depicting a Schwarzschild gravitational
“medium” exactly yielded the path (4) for λ = 0 [8]. (See also Ref. [9] for another interesting
derivation). It is clear that complicated forms of n(r) corresponding to arbitrary spherical
media would lead to path equations more complicated than (4). In these cases, the present
method might be preferable to conventional methods.

An example is Kerr spacetime which represents a unique rotating black hole solution
for λ = 0. Alsing [10] has extended the “medium” analogy to Kerr spacetime with rotation
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parameter J (= angular momentum per unit mass M of the rotating source) and obtained,
to first order in M

r
, the following path equations on the equatorial slice:

d2u

dφ2
+ u − 3Mu2 = M

L2

[(
1 − v2

0

c2
0

)(
1 − 8Mu

J

L

)
− 2

J

L

(
v2

0

c2
0

)]
(part.) (80)

= −2MJ

L3
(light). (81)

Here v0 is the initial velocity of the particle at infinity and L is its conserved total “angular
momentum” per unit test mass given by

L = ρ2 dφ

dA
− 2MJ

ρ
(82)

where ρ = re−Mr . (In the asymptotic region, n = 1, A = t ρ = r so that, for J = 0, we have
L = h, the familiar mechanical angular momentum.) For a particle starting a radial fall from
infinity, L = 0. In this case, with n(r) ∼ 1 + 2M

ρ
, one obtains to lowest order in M

r
that

dφ

dt
= 2MJ

r3 . This implies that the particle starting with an initial radial fall begins to co-rotate
with the black hole in its vicinity (Lense-Thirring effect). In general, we shall take L �= 0.
Conventionally, the sign of J is taken as positive or negative according as the source rotation
is in the counterclockwise or clockwise sense.

To examine stability, we first note that the autonomous system is of the same type as in
(15), (16), only the coefficients are different. The next step is to follow the same procedure
as in Sect. 3. Applying it for a particle starting at v0 = 0, we get the equilibrium points in
the (x ′, y ′) plane at Q1: (0,0) and Q2: (− β

c
,0) where

β = ±
√(

1 + 8JM2

L3

)2

− 12M2

L2
(83)

which reduces to α when J = 0. The interesting result is that the reality of β immediately
imposes two restrictions, viz., that J �= − L3

8M2 and that the quantity under the radical sign
in (83) must be positive which implies (J − J+)(J − J−) > 0 ⇒ either J < J± or J > J±.
These restrictions must be respected if circular orbits are to exist at all in Kerr spacetime.
Once this is fulfilled, exactly the same arguments about the stability as in Sect. 3 go through
under the replacement of α by β .

Case (a): β2 = 0.
This degenerate condition corresponds to two critical values J+, J− of J which are

J± = ∓ L3

8M2

[
2
√

3
M

L
± 1

]
. (84)

The phase paths are the same as those given by (25) indicating unstable equilibrium at radii
given by

rKerr
β=0 = 6M

1 + 8JM2

L3

. (85)

Putting the values of J± from (84), we find the radii rKerr
β=0 = ∓√

3L, which implies that the
rotation J of the source has no role in determining the radii of circular orbits if β2 = 0.
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Case (b): β2 > 0.
The phase paths are the same as (36) with the replacement of α by β . Hamiltonian analy-

sis reveals that Q1 is a center and Q2 is a saddle if β < 0. These conclusions are reversed if
β > 0. Stable circular orbits occur at

rKerr
β �=0 = 6M

(1 + 8JM2

L3 ) −
√

(1 + 8JM2

L3 )2 − 12M2

L2

. (86)

From the above, it follows that, as J → ±∞, the stable radii rKerr
β �=0 go far beyond 6M . This

implies that the rotation J of the source can not bring about stable circular orbits at radii
below 6M for material test particles. The situation is the same as in the nonrotating case.

Case (c): a �= 0.
For light (v0 = c0), a = −2MJ

L3 �= 0, hence the equilibrium points occur at R1: (0,0) and
R2: (− σ

c
,0) where

σ = ±
√

1 + 24JM2

L3
. (87)

Arguments similar to Case (a), Sect. 3 go through, with the replacement of α by σ . Thus
stable radii occur at

rKerr
Light = 6M

1 −
√

1 + 24JM2

L3

(88)

depending on the sign of σ . When J = 0, the orbit has infinite radius. When −1 ≤ 24M2J

L3 <

0, stable circular orbits will exist for rKerr
Light ≥ 6M but when 24M2J

L3 > 0, there can not be any
stable radius for light because rKerr

Light becomes negative.

7 Optical Black Holes

The advantage of the phase space method is that it can be applied to situations beyond
known gravitation theory when a potential function is not always evident. This can occur,
for instance, when one deals with a path equation in the environment of a simulated black
hole described by a refractive medium with index n(r). Possibility of laboratory creation of
such optical black holes exist in view of a remarkable experiment [11] performed in Bose-
Einstein condensates. The experiment demonstrated that optical pulses can travel in the
condensate with extremely small group velocities, as low as 17 m/s. The group velocity of
light in the vicinity of a real gravitational black hole can indeed be arbitrarily low [12].
It has been shown that light motion around a dielectric vortex structure mimics motion
around a black hole [13, 14]. Creation of an event horizon would require that the vortex flow
be supplemented with a radial flow as well [15]. Interesting physical effects, like optical
Aharonov-Bohm effect far away from the vortex core and bending of light near the core,
stem from the consideration of a dielectric medium having a velocity field �u and a varying
index of refraction n.

One might obtain the trajectory of light directly from Fermat’s principle

δ

∫
n(�r)dl = 0. (89)
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The resulting path equation is given by (79) which, on the equatorial plane θ = π/2, gives

dr

dφ
= ±[r4n2(r) − r2

i r2] 1
2

ri

(90)

where ri is a constant of integration, interpreted as impact parameter. Stability of circular
orbits can be easily studied directly once a form for n(r) is given.

A plausible form for n(r) simulating a static dielectric medium of optical black holes has
been studied by Marklund, Anderson, Cattani, Lisak and Lundgren [16]. It is given by

n2(r) = 1 + r2
0

r2
(91)

which has a divergence at r = 0, and r0 is a constant. For r � r0, n(r) ∼ 1 and for r � r0,
n(r) ∼ r0

r
. Defining, as before, u = x = 1

r
, the autonomous system corresponding to the

problem can be written as

ẋ = y, (92)

ẏ = εx, ε = r2
0 − r2

i

r2
i

. (93)

The equilibrium point (0,0) refers to circular orbit only at the asymptotic region r = ∞.
Taking the limit ri → ∞, we find ε = −1. Hence the path equation y2 − εx2 = C represents
a family of concentric ellipses around the origin showing that the orbit is stable independent
of any finite value of the extent r0 of inhomogeneity. But no circular orbit at a finite radius
is possible. This result is quite consistent with the nature of various trajectories analyzed
in Ref. [16]. However, a pathological solution of ẏ = 0 may be imagined by taking ε =
0 ⇒ r2

0 = r2
i . We find that there is no equilibrium point at all in this case as ẋ �= 0 although

ẏ = 0. The latter yields a phase path equation y = dx
dφ

= √
C which integrates to give real

space trajectory x ∝ φ. This is just in the form of Archimedes’ spiral ri/r = φ as shown in
Ref. [16].

We show now that circular orbits are possible in a nonuniformly moving medium with
a slowly varying refractive index. Under these conditions, Leonhardt and Piwnicki [13, 14]
considered a vortex core with a velocity profile decaying away from the core

�u = W

r
eφ̂ (94)

where 2πW is the vorticity. Let us formally introduce the index given by (91) into the
Hamilton-Jacobi equation for light motion derived in [13, 14]. The resulting path equation
can be translated to the following autonomous system in the far field limit

ẋ = y, (95)

ẏ = −x + 1

l2
AB

(
r2

0 x + 2r2
0 W 2x3 + 3r4

0 W 2x5
)

(96)

where lAB is the Aharonov-Bohm modified angular momentum given by

lAB = l + (n2 − 1)W = l + r2
0

r2
W. (97)
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Interestingly, we find that there is only one equilibrium point (apart from the trivial one at
x = r−1 = 0 or r = ∞) at a finite radius photon orbit

R = √
3r0

[
−1 +

{
1 + 3(l2

AB − r2
0 )

W 2

} 1
2
]− 1

2

. (98)

In order that this radius be real, we must have

1 + 3(l2
AB − r2

0 )

W 2
≡ N2 > 1 (99)

where N is real. The quantity q0 in this case works out to

q0 = −
(

4

3

)
W 2

l2
AB

N(1 − N) > 0 (100)

if N > 1. Thus the orbit is stable. Of course, the conclusion crucially depends on the form
of n(r).

We finally mention an interesting similarity between L of (82) and lAB of (97). A light
ray approaching radially (l = 0) will acquire an angular momentum (n2 − 1)W near the
vortex core very similar to the Lense-Thirring effect. With n2 ∼ 1 + 4m

r
, where m is some

constant, we have dφ

dt
∼ 4mW

r3 . This allows us to identify 2W as the angular momentum of
the vortex motion.

8 Summary

Phase space analysis has been successfully applied to practically all walks of life, from
physics, engineering, biology to social sciences. Somehow its use in gravitational physics
seems rather scarce. Our motivation here was to fill that gap. There is certainly room for
further development like exploring how other sophisticated techniques from the phase space
repertoire could be applied to stability of noncircular orbits or even classical fields.

We obtained information on stability of circular orbits arguing from the geometrical path
equation alone. The usefulness of the method is demonstrated in several situations of physi-
cal interest. When the cosmological constant λ = 0, the dimensionless parameter α played a
key role in determining the stability of actual orbits in the physical (r,φ) space. It was shown
that α = 0 is a cusp describing a marginal state, viz., the radius R = 6M is neither stable
nor unstable. The light orbit at R = 3M is unstable independent of the sign of α and in the
asymptotic region it is always stable. All the conclusions were confirmed by the method of
Hamiltonian system.

When λ �= 0, there occurred either one or three equilibrium points. The one correspond-
ing to static radius does not depend on the parameter γ but depends on λ. We found that, for
λ > 0, trajectories of circular material orbit at the static radius are unstable. However, for
light orbits, h → ∞, so that q0 = 1, hence circular light orbits at static radius are always sta-
ble. These two results help us understand better the nature of the static hypersurface: Even
though forces balance at the hypersurface, it is not exactly like the usual flat asymptotic re-
gion where both matter and light orbits are stable. The other two equilibrium points are local
and already analyzed in Sect. 4. They do not depend on λ implying that circular orbits in the
vicinity of M are not influenced by λ. This is a physically consistent result. It was shown
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how a single parameter q0 nicely reproduced all the relevant results about circular orbits in
the Schwarzschild-de Sitter spacetime.

We dealt with circular motion of light and massive particles in the equatorial plane of
the Kerr black hole. The derived results are new. The restrictions J < J± or J > J± for the
existence of circular orbits were derived. A general parameter β was found that reduces to α

under zero rotation, J = 0. For the value β2 = 0, the rotation J of the source has no role in
determining the radii of circular orbits. For β2 > 0, we found that even high values of source
rotation can not bring about a stable radius below 6M . These results could be of importance
to accretion phenomenon in astrophysics.

Finally, we applied the method to real optical dielectric (static and moving) and obtained
consistent results. Here we only discussed a simple example relevant to optical black holes
but any given form of refractive index n(r) can be similarly handled. The important ad-
vantage is that we did not require information on dynamical potential functions, but relied
solely on the path equations coming from Fermat’s principle or Hamilton-Jacobi equation.
Several such path equations corresponding to various refractive media have been worked
out in Ref. [6]. It will naturally be of interest to apply the method in the refractive wormhole
“media” constructed from exotic matter [17, 18] or in Brans-Dicke theory [19, 20]. Work is
underway.
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